See also: Paleooceanography. Paleooceanography, Biological Proxies: Alkenone Paleothermometry from Coccoliths. Paleooceanography, Physical and Chemical Proxies: Mg/Ca and Sr/Ca Paleothermometry; Oxygen Isotope Stratigraphy of the Oceans. Quaternary Stratigraphy: Bistatigraphy.

References

Relevant Websites
http://www.nhm.ac.uk/ - Natural History Museum (see International Nanoplankton Association).
http://oceancolor.gsfc.nasa.gov/ - SeaWIFS Project, NASA Goddard Space Flight Center, and ORBIMAGE.

Corals, Sclerosponges and Mollusks
T M Quinn, University of South Florida, FL, USA
B R Schöne, University of Frankfurt, Frankfurt, Germany
© 2007 Elsevier B.V. All rights reserved.

Introduction
The early identification and understanding of the temporal significance of growth increments in many calcareous skeletons, but especially those in mollusks and corals, facilitated their use as a means to study environmental variability in the Quaternary. Armed with this understanding, geochemical studies of the skeletons of mollusks and corals, and later of scleropores, began in earnest. These early investigations established many of the fundamental principles that now form the foundation of nearly all studies using the skeletons of corals, scleropores, and mollusks to study environmental and climate change. In this article, we provide a general overview of the use of corals, scleropores, and mollusks as archives of variability in the Quaternary Earth system.